
Longest Paths

We have looked at 3 shortest path algorithms:

The algorithm for unweighted graphs uses a queue so that we put into the queue
first all paths of length 1, then all paths of length 2 to nodes we haven’t reached
yet, then all paths of length 3 to nodes we haven’t reached yet, and so forth.

Dijkstra’s algorithm for graphs with non-negative weights on the edges uses a
priority queue. When a node comes out of the priority queue we know the
cheapest path to it and we add to the priority queue all endpoints of its outgoing
edges that haven’t themselves come out of the priority queue.

The Bellman-Ford algorithm works for any kind of weights. It uses a queue like
the unweighted algorithm, though when something emerges from the queue we
only know the tentative cheapest path to it. We look at the destinations of its
outgoing edges and add back to the queue any vertex that this gives a cheaper
path to.

Now suppose we want to find the longest path through a graph
rather than the shortest path. Will any of those three algorithms
convert to a longest path algorithm by ‘reversing the inequality”
i. e. replacing < with >

Answer: the Bellman-Ford algorithm converts easily into a longest path
algorithm; the others don’t convert at all.

The unweighted paths algorithm and Dijkstra’s algorithm both depend on
knowing the best path to a node when we remove it from the queue or priority
queue. We can’t possibly know the longest path to the first node that comes out
of the queue without exploring the rest of the edges, so those algorithms will
not convert to longest path algorithms. On the other hand, the Bellman-Ford
algorithm always works in terms of the “best path so far’. When we pull node X
out of the queue and see that X has an edge to vertex Y that gives a better path
to Y we update the information from Y and add Y to the queue. “Better” can
mean shorter or it can mean longer; it just depends on what kind of path you
are trying to find.

Bellman-Ford is the most expensive of the path-finding algorithms in terms
of running time, but it is also the most versatile. It can handle weighted and
unweighted graphs (for unweighted ones think of every edge as having
weight 1), and for weighted graphs it can handle both positive and negative
weights.

