
Longest Paths



We have looked at 3 shortest path algorithms:

The algorithm for unweighted graphs uses a queue so that  we put into the queue 
first all paths of length 1, then all paths of length 2 to nodes we haven’t reached 
yet, then all paths of length 3 to nodes we haven’t reached yet, and so forth.

Dijkstra’s algorithm for graphs with non-negative weights on the edges uses a 
priority queue.  When a node comes out of the priority queue we know the 
cheapest path to it and we add to the priority queue all endpoints of its outgoing 
edges that haven’t themselves come out of the priority queue.

The Bellman-Ford algorithm works for any kind of weights.  It uses a queue like 
the unweighted algorithm,  though when something emerges from the queue we 
only know the tentative cheapest path to it.  We look at the destinations of its 
outgoing edges and add back to the queue  any vertex that this gives a cheaper 
path to.



Now suppose we want to find the longest path through a graph 
rather than the shortest path.  Will any of those three algorithms  
convert to a longest path   algorithm by ‘reversing the inequality”
i. e.  replacing < with >



Answer:  the Bellman-Ford algorithm converts easily into a longest path  
algorithm; the others don’t convert at all.

The unweighted paths algorithm and Dijkstra’s algorithm both depend on 
knowing the best path to a node when we remove it from the queue or priority 
queue. We can’t possibly know the longest path to the first node that comes out 
of the queue without exploring the rest of the edges, so those algorithms will 
not convert to longest path algorithms.  On the other hand, the Bellman-Ford 
algorithm always works in  terms of the “best path so far’.  When we pull node X 
out of the queue and see that  X has an edge to vertex Y that gives a better path 
to Y we update the information from Y and add Y to the queue.  “Better” can 
mean shorter or it can mean longer; it just depends on what kind of path you 
are trying to find.



Bellman-Ford is the most expensive of the path-finding algorithms in  terms 
of running time, but it is also the most versatile.  It can handle weighted and 
unweighted graphs (for unweighted ones think of every edge as having 
weight 1), and for weighted graphs it can  handle both positive and negative 
weights.


